Scientific Posters

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Donec ac odio tempor orci dapibus ultrices in iaculis nunc. Vitae sapien pellentesque habitant morbi tristique senectus. 

SELEXIS SUREscan: De-risking Cell Bank Generation with Comprehensive Genomic Analysis

Posted by Selexis admin on Sep 29, 2015 12:00:00 AM
September 29, 2015

Recombinant therapeutic protein production processes must guarantee a sufficiently small variability in the product quality. To keep this variability low, it is critical to run the process in a totally reproducible way. This requires controlling all cultivation parameters. The use of new analyzers, generating new data sets, besides cultivation parameters (e.g. viable cell density, metabolite concentrations) is a desirable way to innovate bioprocesses. The advent of Next-generation Sequencing (NGS) has led to the ability of using genome information to find reasons for variability. Research Cell Banks (RCBs) are not necessarily cell populations with identical genomes or single integration sites even though they arise from a single isolated cell. These mixed populations can lead to unacceptable manufacturing variability. Selexis’ SUREscan™, consisting of the detailed CHO-M genomic map and proprietary bioinformatics tools, decreases manufacturing risks by ensuring transgene integrity in RCBs and by surveying for the emergence of deleterious mutations either in the transgene sequence or in genes that are important for cell survival at a yet unknown resolution.

View PDF

Keywords: research cell bank, Recombinant protein production, next-generation sequencing, genomic analysis