Scientific Publications

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Donec ac odio tempor orci dapibus ultrices in iaculis nunc. Vitae sapien pellentesque habitant morbi tristique senectus. 

1 min read

Epigenetic regulatory elements: Recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells.

June 23, 2015

Successful generation of high producing cell lines requires the generation of cell clones expressing the recombinant protein at high levels and the characterization of the clones’ ability to maintain stable expression levels. The use of cis-acting epigenetic regulatory elements that improve this otherwise long and uncertain process has revolutionized recombinant protein production. Here we review and discuss new insights into the molecular mode of action of the matrix attachment regions (MARs) and ubiquitously-acting chromatin opening elements (UCOEs), i.e. cis-acting elements, and how these elements are being used to improve recombinant protein production. These elements can help maintain the chromatin environment of the transgene genomic integration locus in a transcriptionally favorable state, which increases the numbers of positive clones and the transgene expression levels. Moreover, the high producing clones tend to be more stable in long-term cultures even in the absence of selection pressure. Therefore, by increasing the probability of isolating a high producing clone, as well as by increasing transcription efficiency and stability, these elements can significantly reduce the time and cost required for producing large quantities of recombinant proteins.

View Article Online

Harraghy N, Calabrese D, Fisch I, Girod PA, LeFourn V, Regamey A, and Mermod N. (2015). Epigenetic regulatory elements: recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells. Biotechnol. J., 10, 967-978.

Keywords: Epigenetics Matrix attachment region Recombinant protein production Transgene silencing Ubiquitously-acting chromatin opening element